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Abstract

This paper is based on the research of Riho Terras, Eric Roosendaal, and
David C. Kay on the Collatz problem. It addresses the proposition that
”every positive integer N > 1 has a finite stopping time” and uses Parity
Vectors (PVs) to provide insight that will be useful in proving this proposition.
First, we classify finite-length PVs into three categories based on Terras’s
convergence condition. Then, we generate and count PVs using our own
method based on ”the length of PV” and ”the number of 1s in PV.” Finally,
we consider the results. We also propose a Bird’s eye view of parity vectors as a
tool to visually understand their behavior and convergence status. We analyze
the set of parity vectors corresponding to the cosets that classify all integers,
as well as the convergence status of characteristic parity vectors, based on
actual measurement data. As a result, we list hypotheses that support the
validity of the affirmative Collatz conjecture. The figures and tables in the
main text can be viewed by clicking the corresponding hyperlinks and are
summarized in Appendix 1. Additionally, demonstrations such as the parity
vector Bird’s eye view and the computerized data analysis can be accessed via
the corresponding hyperlinks. The source text of the demonstration programs
can be downloaded from the list in Appendix 2.

Keywords— Collatz Conjecture, Stopping Time, Total Stopping Time, Glide,
Glide Record, Parity Vector, generator of Parity Vector, v Convergence time, Convergence
Condition Formula , Diophantine equation, Bird’s eye view of the parity vector

1 Introduction

In this chapter, we provide definitions of terms, notations, and lemmas, citing previous
related research papers, as background knowledge for the discussion. In addition to these
findings, we will explain our research results in detail from Chapter 2 onwards.
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1.1 Collatz conjecture

The Collatz conjecture is the conjecture that ”for any positive integer N, if N is odd,
multiply by 3 and add 1, and if N is even, divide by 2, repeatedly, will result in 1.”
However, if N is odd, multiplying by 3 and adding 1 will always result in an even
number, so further division by 2 does not change the meaning of the expectation.

Let S0 = N , and for all i

Si+1 =











Si/2 if Si is even

(3 · Si + 1)/2 if Si is odd

(1-1)

This sequence of Si, S(N) = (S0, S1, S2, · · · , Si−1, Si, · · · ) is called the Collatz sequence
of N.

1.2 Stopping Time and Total Stopping Time

For any positive integer N (=S0), if there exists a smallest integer k in the Collatz
sequence such that Sk < S0, then k is called the Stopping Time (also called the Glide) of
N. And if there exists q such that Sq = 1 is called the Total Stopping Time (also called
Delay) of N. The Stopping Time of N is expressed as σ(N), and the total stopping time
of N is expressed as σ∞(N).
In general, all positive integer N can be expressed in the form
2km+ r(0 ≤ m, 0 ≤ r < 2k).
This means that the integer N is classified into 2k modulo classes with 2k as the modulo
and r as the remainder. For convenience of explanation, the remainder class with 2k as
the modulo and r as the remainder is written as Nr = {2km+ r}.

(The Stopping time of remainder class)
Here, if k=5, all integers can be classified into a set of 25(=32) cosets Nr = {25m+ r}
(0 ≤ r < 25). Considering the stopping time for Nr of 32, we get Table 1.

Table 1: The Stopping Time of Nr = {25m+ r} or (Appendix 1)

If r=11, S0 = 25m+ 11, S1 = 3 · 24m+ 17, S2 = 32 · 23m+ 26, S3 = 32 · 22m+ 13,
S4 = 33 · 2m+ 20, S5 = 33m+ 10, and since S0 > S5, σ(2

5m+ 11) = 5.

That is, the stopping time for all integers belonging to Nr other than r=7,15,27,31 are all
less than or equal to 5, and for r=7,15,27,31, stopping time, if it exists, is a finite integer
greater than or equal to 6.

Lemma 1. There is no maximum value of stopping time.

Proof. If the maximum value exists, let it be k. Considering the integer
S0 = 2k − 1,then S1 = 3 · 2k−1 − 1, S2 = 32 · 2k−2 − 1, · · · , Sk = 3k − 1, and
S0 < Si(1 ≤ i ≤ k), Stopping time must be greater than k. This contradicts the
assumption that the maximum value is k. (Q.E.D.)

Lemma 2. An integer can be obtained with the given stopping time. But there is also a
stopping time that does not exist.

Proof. To find an integer with the given stopping time , it can be obtained by referring
to the Bird’s eye view of the parity vector described later and using, for example, the
parity vectors of the upper and lower limits of the un converged region. (See [Data
Analysis 3 and 4] in Sections 3.2.2)
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The method for finding all applicable integers is possible using the mathematical method
of Theorem 1 in [4] or Theorem 2 in [5]. (Q.E.D.)

Lemma 3. If the proposition ”Every integer N>1 has a finite stopping time” is true
using this stopping time, then the Collatz conjecture ”all positive integers reach 1 (with
total stopping time)” is also true.

Proof. Explanation by the inductive method of the integer N.
First, the Collatz sequence of 2 becomes {2, 1}, which reaches 1. 3 is {3, 5, 8, 4, 2, 1}, 4 is
{4, 2, 1}, 5 is {5, 8, 4, 2, 1},· · · .We can see that all numbers up to a certain measurable
integer have a stopping time and reach 1 (have a total stopping time), i.e., the
proposition is true.

Next, suppose that all integers less than or equal to N have a stopping time and reach 1.
Consider N+1, and according to the premise of the proposition,N+1 has a certain
stopping time k.
This means that the (k+1) th integer in the Collatz sequence of N+1 is an integer less
than N+1(less than or equal to N). Then, from the induction assumption, all integers
less than or equal to N reach 1 (have total stopping time), so N+1 reaches 1 (have total
stopping time). Therefore, the proposition is true. (Q.E.D.)

Note that Riho Terras [1] proved that ”almost all integers N with N>1 has a finite
Stopping Time” (see Terras’ theorem in [2]).

Demonstration 1. Click on Program 1 to check the Collatz sequence of integer N
and stopping time.The source text of this program (PHP, Python) can be downloaded
from Appendix 2.

1.3 Parity Vector and its Convergence

Parity vector v(N) for any positive integer N is defined as vi(N) = Si−1 mod 2 (1 ≤ i).
For k elements with 1 ≤ i ≤ k, v(N) is described as v(N)=(v1, v2, v3, · · · , vk) or
v(N)=v1v2v3 · · · vk.
At this point, the number of elements k is called the length of this parity vector v(N) and
the integer N(=S0) that generated this parity vector v(N) is called a generator of v(N),
Sk−1 is called a Pre-resultant of v(N), and Sk is called a resultant of v(N). (References
[6]).

(Example)
For N=17, the first six elements are S0 = 17, S1 = 26, S2 = 13, S3 = 20, S4 = 10, S5 = 5,
so we find v1 = 1, v2 = 0, v3 = 1, v4 = 0, v5 = 0, v6 = 1. Therefore, we write v(17) =
(1,0,1,0,0,1) or v(17) = 101001. 17 is the generator of this parity vector v(17), 5 is the
pre-resultant, and the next S6 = 8 is the resultant.

The parity vector completely describes the iterative operation of the Collatz operation of
formula (1-1) on N. Below, we introduce some lemmas concerning the parity
vector.([2][3][6]).

Lemma 4. If N is a positive integer of the form 2km+ r(0 ≤ r < 2k), then the first k
elements of the parity vector are dependent on only r.
(For the proof, see Lemma 1 in [2])

Lemma 5. Suppose wi(1 ≤ i ≤ k) is a parity vector (w1, w2, · · · , wk) of length k.
Then there exists some number N for which vi(N) = wi(1 ≤ i ≤ k)
(For the proof, see Lemma 2 in [2])

Lemma 6. Let S0 = N be a positive integer and vi its parity vector.
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Let d(a, b) =
∑

i vi(a ≤ i ≤ b) . Especially, d(k) be a shorthand for d(1, k).
That is, d(k) is the number of ”1s” in the parity vector of length k.
Then Sk ≈ Tk = S0 · 3

d(k)2−k and lim(Sk − Tk)/Sk = 0 for sufficiently large Sk.
(Or, in logarithmic form, log(Sk) ≈ log(Tk) = log(S0) + d(k) · log(3)− k · log(2))
(For the proof, see Lemma 4 in [2])

(Example)
Taking N = S0 = 250 − 1 = 1125899906842623 results in
S50 = 350 − 1 = 717897987691852588770248 and
T50 = S0 · 3

50 · 2−50 ≈ 717897987691851951148749
where the difference between the two numbers is already less than 10−15 · S50.

Lemma 6 shows that we can estimate Sk from v(N), so we can use v(N) to consider the
convergence of N. The convergence of N means whether or not N has a finite stopping
time.

Now, let vi(1 ≤ i ≤ k) be a parity vector of length k, and for any 1 ≤ j ≤ k, let c(j) be
c(j) = d(j) · log(3)− j · log(2)( d(j) is the formula defined in Lemma 6).

In this case, if c(j) < 0(i.e., Tj < S0) for some j in 1 ≤ j ≤ k, we call v convergent, and
the smallest value j for which c(j) < 0 is called the convergence time of v, or more
generally, the convergence time of any N with such a parity vector.
If there is no such value of j, we call it v divergent or v un convergent.

Here, c(j) = d(j) · log(3)− j · log(2) < 0, that is, the inequality

j > d(j) · log(3)/log(2) (1− 2)

are called convergence condition formula.
From the above, the convergence of parity vector vj(1 ≤ j ≤ k) with length k can be
classified into the following three types.
1○ If k > min{∃j | j > d(j) · log(3)/ log(2)}: Already converged (convergence time=j)
(j <k)
2○ If k = min{∃j | j > d(j) · log(3)/ log(2)}: Just converged (convergence time = k)
3○ If j < d(j) · log(3)/ log(2) for all j: Un converged

Hereafter, in order to shorten the text, words in the main text may be simplified as in
the footnote.∗

From formula (1-2), the relationship between d(j) and v convergence time when the
length of PV is k is as shown an Table 2.
However, j is the minimum value that satisfies the convergence condition formula for
values j ≤ k. The values of the number of convergence times in this table are consistent
with the ”values of the stopping time τ” in Table 3 in [1].

Table 2: Relationship between PV length k,d(j),and v convergence time or (Appendix 1)

Here, we understand that the stopping time (and glide) of an integer N and the
convergence time of v(N) can be considered equivalent based on the considerations of
Riho Terass [1] and Eric Roosendaal ([2],[3]). From now on, we will use the terms
stopping time, glide, and convergence time as the same.

Lemma 7. Suppose n is the smallest generator of a parity vector V of length k with r
number of 1s.

∗(1) Parity Vector→ PV
(2) Already converged → A-conv., Just converged → J-conv., Un converged → U-conv.,
(3) Already converged PV → A-PV, Just converged PV → J-PV, Un converged PV → U-PV
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Then find generator n’ of parity vector V ⊕ x (x is 0 or 1) of length k+1. Where V ⊕ x is
assumed to mean that x (0 or 1) is added after the parity vector V.
If the resultant of V matches x (that is Sk(mod 2) = x), then n′ = n is the solution.
But if Sk and x are mismatched (that is Sk (mod 2) 6= x), then n′ = n+ 2k is the
solution.
Furthermore, if m is the resultant of V then m′ = m+ 3r is the pre-resultant of V ⊕ x.
(See Section 2.2. For the proof, see Theorem A in [6])

1.4 Diophantine Equation

The existence of a generator of a given parity vector can be seen in Lemma 8 below.

Lemma 8. A parity vector of length k is uniquely generated by a positive integer less
than or equal to 2k . Then, multiple parity vectors of length k correspond one-to-one to
their smallest generator.
(For the proof of Lemma 8, see Theorem B in [6])

(Find the generator of a parity vector)

Let a parity vector of length k with some integer n > 1 be v(n) = (v1, v2, v3, · · · , vk) and
let d be the number of 1s in element vi of v(n) and m be the resultant after
theoperationofv(n) for n, then the following formula holds.
(See Theorem 4 in [4], Section 3 and 4 in [6])

m = (3d/2k)n+R (1− 3)

However, R is considered to be the unique value of the parity vector v(n) and is
calculated by the following formula (cf. chapter4 in [6].)

R =
k

∑

i=1

vi2
i−13δ(i)/2k which δ(i) = d−

i
∑

j=1

vj

By rearranging equation (1-3) and substituting q = 2kR, the following equation is
obtained.

2km− 3dn = q (1− 4)

Equation (1-4) uses m and n as variables, and since the coefficients 2k and 3d are
relatively prime, it becomes a first-order Diophantine equation, and there are an infinite
number of (m , n) solutions. Among these infinite solutions, n is a generator of v(n), and
from Lemma 8, the value n0 corresponding to 1 ≤ n ≤ 2k is the minimum generator of
the parity vector of length k and is uniquely determined. Correponding to n0, the
solution m0 of resultant is also uniquely determined. The general solution for m and n is
expressed as n = n0 + 2kt,m = m0 + 3dt.
t is a parametric variable and is an integer greater than or equal to 0.

Lemma 9. If the number of 1s in an un converged parity vector of length k is d, the
generator n and resultant m of this PV can be found by solving the Diophantine
equation (1-4).
Proof. As explained above.(Q.E.D.)

(Example)
(1) 1111000

q = 20 × 33 + 21 × 32 + 22 × 31 + 23 × 30 = 65
Equation 27m− 34n = 65. Solution is n=15, m=10
General solution n = 15 + 27t,m = 10 + 34t

(2) 1110100
q = 20 × 33 + 2× 32 + 22 × 31 + 24 × 30 = 73
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Equation 27m− 34n = 73. Solution is n=7 , m=5
General solution n = 7 + 27t,m = 5 + 34t

(3) 110111001
q = 20 × 35 + 21 × 34 + 23 × 33 + 24 × 32 + 25 × 31 + 28 × 30 = 1117
Equation 29m− 36n = 1117. Solution is n= 219 , m=314
General solution n = 219 + 29t,m = 314 + 36t

According to Lemma 7 to 9, there are two ways to find the generator of an arbitrary PV
of length k: using Lemma 7 to compute it sequentially from the first digit of the PV, or
solving the Diophantine equation of Lemma 9.

1.5 Parity Vector Classification (J-conv., A-conv., U-conv.)

If the first number of PV is 0, the generator corresponding to that PV is even, so the
stopping time is 1, and therefore the v convergence time is 1. The following PVs with a
leading number of 1 are examined.
Based on the convergence condition formula (1-2) above, the convergence status of PVs
of lengths 1 to 6 can be checked as shown in Table 3.
The log(3)/log(2) in the convergence condition formula was calculated as 1.58.
The “numbers in bold” in Table 3 are those that satisfy the convergence condition
formula, and the “convergence status ” is based on the PV convergence classification
explained in Section 1.3. Note that Just in “Convergence Status” means Just converged
PV, Already means Already converged PV, and Blank means Un converged PV.

Table 3: Example of determining the convergence of a parity vector
using a convergence condition formula or (Appendix 1)

Table 4: Examples of J-converged PV and Un converged PV by length or (Appendix 1)

2 Generating and Counting Parity Vectors

All parity vectors can be formally classified as follows: (1) by length, which ranges from 1
to infinity, and (2) by the number of 1s contained in the parity vector. Below, we will
explain how to generate the J-PV and U-PV and how to calculate their number for each
of (1) and (2).

2.1 Generating and Counting of Parity Vectors by Length

Based on the procedure of examining J-PV and U-PV by ”length” of parity vector in
Table 3 and Table 4, you can learn how to generate PVs of length k+1 from PVs of
length k and how to calculate their number.

2.1.1 Methods for Generating Just Converged PVs and Un Converged
PVs by Length

It is clear that adding 0 or 1 to a J-PV or a A-PV of length k results in a A-PV of length
k+1. Therefore, it can be seen that in order to generate a J-PV or a U-PV with length
of k+1, it is sufficient to add 0 or 1 to a U-PV with length of k.

[Algorithm 1] Algorithm for generating Un converged PVs and Just converged PVs of
length k+1 from Un converged PVs of length k.
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(Explanation)
Let V be a U-PV of length k. We write V ⊕ x to add x(1 or 0) to V and d(k) the
number of 1s in a PV of length k. The algorithm for finding U-PVs and J-PVs of length
k+1 from U-PVs of length k and d(k) number of 1s is as follows. If there are multiple
U-PVs of length k, it is performed for each of them.

Procedure 1: V ⊕ 1 is a U-PV of length k+1.
Procedure 2: V ⊕ 0 can be divided into the following two cases depending on whether
the PV convergence condition formula (1-2) is satisfied.

If (k + 1) > d(k + 1) · log(3)/ log(2), it becomes J-PV of length k+1
Otherwise, it is a U-PV of length k+1.

(Example)
log(3)/ log(2) is calculated as 1.58.

(1) Let V=11011 be one of the U-PVs of length 5.
Procedure 1: V⊕1=110111 is a U-PV with length 6
Procedure 2: V⊕0=110110 is not 6 > 4×1.58, so it is a U-PV with length 6,
Therefore, two U-PVs (110111, 110110) with length 6 are generated from a
U-PV (11011) with length 5.

(2) Let V=110110 be one of the U-PVs of length 6.
Procedure 1: V⊕1=1101101 becomes U-PV with length 7
Procedure 2: V⊕0=1101100 is 7 > 4×1.58, so it is J-PV with length 7
Thus, one U-PV (1101101) and one J-PV (1101100) of length 7 are generated
from U-PV (110110) of length 6.

The generators for the generated un converged PV and just converged PV can be found
by sequentially calculating from the first digit of the PV as described in Section 1.3, or
by solving the Diophantine equations as described in Section 1.4.

Using the above algorithm, the U-PV list in Table 5 and the J-PV list in Table 6 are
created.

Table 5: List of Un-converged PVs by length (only a partial list) or (Appendix 1)

Table 6: List of J-converged PVs by length (only a partial list) or (Appendix 1)

2.1.2 Calculating the number of J-converged PVs and Un-converged
PVs by “Length”

The calculation of the number of J-PVs and U-PVs per length of PV can be counted in
the algorithm described in 2.1.1, but we formulate a recurrence formula for calculating
the number of PVs and perform the calculation.

(1) Calculating the number of U-PVs by length

Since PVs with a leading 0 are J-PVs or A-PVs, PVs with a leading 1 are targeted. The
condition for a PV of length k to be a U-PV is given by formula (1-2) with the direction
of the inequality in the convergence condition formula changed, and the following
function ǫ(k, d) is defined for k and d.

ǫ(k, d) =

{

1 : if k < d · log(3)/ log(2)
0 : if other

Let W(k,d) be the number of U-PVs with length k and the number of 1s d. In this case,
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1○ the number of U-PVs of length k+1 and d+1 when 1 is added to the U-PV of length
k is W(k+1 ,d+1), and 2○ the number of U-PVs of length k+1 and d when 0 is added
W(k+1 ,d) are expressed by the following formulae, respectively.

1○ W (k + 1, d+ 1) = ǫ(k + 1, d+ 1) ·W (k, d)

2○ W (k + 1, d) = ǫ(k + 1, d) ·W (k, d)

From the above two formulae, the number of U-PVs with length k+1, W(k+1,d), can be
obtained by the following recurrence formula (2-1) using the number of U-PVs with
length k, W(k,d).

W (k + 1, d) = ǫ(k + 1, d){W (k, d) +W (k, d− 1)}, (2− 1)

where the initial values are
W(1,0)=0, W(1,1)=1, and W(k,d)=0 (d>k).

From the above, the number of U-PVs of length k+1, W(k+1), is the sum of the results
of (2-1).

W (k + 1) =
b

∑

d=a

W (k + 1, d), (2− 2)

where a=⌈(k + 1) · log(2)/log(3)⌉ (⌈y⌉ is the ceiling function) and b=k+1.

(2) Calculating the number of J-PV by length.

Let X(k,d) be the number of J-PVs with length k and the number of 1s d. The J-PVs of
length k+1 can be found by adding one zero to the U-PVs of length k and checking
whether the convergence condition formula (1-2) is satisfied. Therefore, let d be the
number of 1s in the U-PV of length k, and define the function µ(k, d) for k and d as
follows

µ(k, d) =

{

1 : if k > d · log(3)/ log(2)
0 : if other

Then, the number of X(k+1, d) can be calculated using the number of U-PVs, W(k,d),
and since J-PVs of length k+1 can be checked for convergence by adding 0 to U-PVs of
length k, the following formula (2-3) is valid.

X(k + 1, d) = µ(k + 1, d) ·W (k, d)(k ≥ 1), (2− 3)

where the initial values are X(1,0) = 1 and X(1,1) = 0.

From the above, the number of J-PVs of length k+1, X(k+1), is the sum of the results of
(2-3).

X(k + 1) =
b

∑

d=a

X(k + 1, d), (2− 4)

where a=0 and b= ⌊(k + 1) · log(2)/log(3)⌋ (⌊y⌋ is the floor function).

From the above, the following theorem holds.

Theorem 1. The number W(k+1) of un converged parity vectors of length k+1
generated from W(k) un converged parity vectors of length k can be found using
formulae (2-1) and (2-2), and the number X(k+1) of Just converged parity vectors can
be found using formulae (2-3) and (2-4).

Proof. As explained above.(Q.E.D.)
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Using Theorem 1, the number of J-PVs, A-PVs, and U-PVs by length can be calculated
as shown in Table 7.

Table 7: Summary table of J-converged, A-converged, and Un-converged PVs
by PV length or (Appendix 1)

Note: (A) Total number of PVs(2k), (B) Number of Just converged PVs, (C) Number of
Already converged PVs, (D) Number of Un converged PVs, (E) Ratio of Un converged
PVs D/A

Table 7 shows the values of “E: Un convergence ratio,” which is the ratio of the total
number of PVs of the same length to the number of U-PVs. As the length increases, the
Un convergence ratio approaches zero as much as possible, which is consistent with the
values of |Wk|/|Vk| (divergence ratio) in Eric Roosendaal’s paper [3] and with the
correction value of “Table A. Values of the Distribution Function F(k)” in Riho Terras’s
paper [1].

The computer output of the number of pieces calculated by length can be seen by
clicking on the link shown below.
[Data by length] [1 to 100] [1 to 1000] [1 to 10000] (Appendix 2)

2.2 Generating and Counting Just Converged PV and Un
Converged PV by “Number of 1s”

Next, let us consider how to generate and calculate the number of J-PVs and U-PVs for
each group with the same number of 1s in the parity vector (hereinafter referred to as
“by number of 1s”).

2.2.1 Method of generating Just converged PV and Un-converged PV
by “Number of 1s”

Table 3 shows that the only U-PV with d=1 is V=1, the U-PV with d=2 is 11 and 110,
the U-PV with d=3 is 111, 1110, and 1101, and the U-PV with d=4 is 1111, 11110,
111100, 11101, 111010, 11011, and 110110.
Similarly, Table 3 shows that there is one J-PV with d=1 for V=10, one J-PV with d=2
for 1100, and two J-PVs with d=3 for lengths of 5, 11100 and 11010. d=4 J-PVs are
1111000, 1110100, and 1101100. After d=5, U-PVs and J-PVs can still be generated
based on the convergence condition formula (1-2), discriminating between J-conv. and
U-conv. The generation algorithm can be thought of as follows.

[Algorithm 2] Algorithm to generate Un converged PV and J-converged PV with d+1
number of 1s from Un-converged PV with d number of 1s.
(Explanation)
Let V be a U-PV of length k and the number of 1s d. We write V⊕x to add x(1 or 0) to
V. Also, A→B is used to mean that the number (or sequence of numbers) in A is
replaced by B.
The algorithm 2 for finding d+1 U-PVs and J-PVs from a U-PV of length k and number
of 1s d is as follows. If V ⊕ 0 is a U-PV, then it is a U-PV with d number of 1s.
Therefore, d+1 U-PVs can be generated by adding 0 to the PV of V⊕1.
When there are multiple U-PVs, this is done for each one.
Procedure 1: V⊕1 with d+1 1s added to V is a U-PV of length k+1

Replace V⊕1→V, d+1→d, and k+1→k.
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Procedure 2: Also, V⊕0 of length k+1 is the PV with one zero added to V after
Procedure 1 or Procedure 3.

Replace V⊕0→V and k+1→k.

Procedure 3: Check the convergence of the PVs generated in Procedure 2,
If k > d · log(3)/log(2) is satisfied, the PV is J-PV. The Procedure is

terminated.
Otherwise, the PV is U-PV. Repeat Procedure 2.

(Example) Let V=11011 be the U-PV for k=5, d=4. The Procedure is described
according to the above algorithm 2.

Procedure 1: Add 1 to V=11011. V⊕1=110111 is a U-PV of length k=6, d=5.
Let V=110111.

Procedure 2: Add 0 to V=110111 and set V⊕0=1101110 to V, k=7.
The number of 1s remains the same, 5.

Procedure 3: V=1101110 is a U-PV with k=7 and d=5 since 7< 5×1.58

Procedure 2: Add 0 to V=1101110 and set V⊕0=11011100 to V, k=8.
The number of 1s remains the same, 5.

Procedure 3: V=11011100 is a J-PV with k=8 and d=5 since 8> 5 × 1.58. Termination.

From the resulting U-PV 11011 with k=5, d=4, one can generate two U-PVs, 110111
with k=6 and 1101110 with k=7, and one J-PV, 11011100 with k=8. They are d=5 for
the number of 1s.

The generators for the generated U-PV and J-PV can be found by sequentially
calculating from the first digit of the PV described in Section 1.3 or by solving
Diophantine equations as described in Section 1.4,

By executing algorithm 2 above , the U-PV list in Table 8 and the J-PV list in Table 9
below can be generated.

Table 8: Un converged PV list by ”number of 1s” or (Appendix 1)

Table 9: J-converged PV list by ”number of 1s” or (Appendix 1)

2.2.2 Calculating the Number of J-converged PVs and Un-converged
PVs by “Number of 1s”

The calculation of the number of J-PVs and U-PVs by “number of 1s” can be performed
in the algorithm 2 described in 2.2.1, but in this section, we will use a recurrence formula
to calculate the number of PVs.

(1) Calculating the number of U-PVs by “number of 1s”
Since PVs with leading 0s are J-PVs or A-PVs, PVs with leading 1s are targeted.
Let W(d, u) be the number of U-PVs with d 1s and u 0s. To determine whether a PV is
a U-PV, we define the following function ǫ(d, u) for d and u.

ǫ(d, u) =

{

1 : if (d+ u) < d · log(3)/ log(2)
0 : if other
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Using this condition, we find the number of W(d+1, u) when the number of W(d, u) is
known.
A U-PV with d+1 numbers of 1s can be obtained from a U-PV with d numbers of 1s and
u numbers of 0s by adding 1 to the U-PV. Therefore, the number W(d+1, u) is
expressed by the following formula 1○.

1○ W (d+ 1, u) = ǫ(d+ 1, u) ·W (d, u)

Furthermore, the number of PVs generated by adding multiple zeros to the U-PV of
W(d+1,u) is expressed by the following formula 2○.

2○ W (d+ 1, u+ 1) = ǫ(d+ 1, u+ 1) ·W (d+ 1, u)

From the above formulae 1○ and 2○, the number of U-PVs with d+1 number of 1s can
be obtained from the following formula (2-5).

W (d+ 1, u) = ǫ(d+ 1, u){W (d, u) +W (d+ 1, u− 1)}, (2− 5)

where the initial values are
W(1,0)=1, W(1,1)=0, and W(d,u)=0 (u<0).

From the above, the total number of U-PVs with d+1 1s, W(d+1), is obtained by
summing the results of formula (2-5).

W (d+ 1) =
b

∑

u=a

W (d+ 1, u), (2− 6)

where a = 0 and b = ⌊(d+ 1) · {log(3)/log(2)− 1}⌋ (⌊y⌋ is the floor function).

(2) Calculating the number of J-PVs by “number of 1s”
Next, the number of J-PVs with d+1 number of 1s is calculated.
The number of J-PVs can be obtained from the algorithm 2 for generating J-PVs and
U-PVs in 2.2.1. A J-PV with d+1 1s can be obtained by adding 1 to a U-PV with d 1s,
and then adding 0s until the convergence condition is satisfied.
Therefore, the number of J-PVs with d+1 1s, X(d+1), is equal to the total number of
U-PVs with d 1s, W(d), and the following formula (2-7) is obtained.

X(d+ 1) = W (d) (2− 7)

From the above, the following theorem holds.

Theorem 2. When W(d) un converged parity vectors with d numbers of 1s are
generated, the number W(d+1) of un converged parity vectors with d+1 numbers of 1s
can be found using formulae (2-5) and (2-6), and the number X(d+1) of just-converged
parity vectors can be found using formula (2-7).

Proof. As explained above.(Q.E.D.)

From Theorem 2, if J-PV and U-PV are calculated for each number of 1s, they are
shown in Table 10.
Note that among PVs of finite/infinite length with the same number of 1s, it is clear
that all PVs except J-PV and U-PV are A-PV.

Table 10: Number of J-converged PV and Un-converged PV by ”number of 1s” or
(Appendix 1)

The computer output of the ”number of 1s” count can be seen by clicking on the link
shown below.
[Data by number of 1s] [1 to 100] [1 to 1000] [9000 to 10000] (Appendix 2)
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3 Consideration of the Collatz Conjecture Using

Parity Vector

Based on the results of parity vector and the characteristics of the parity vector
described below, we describe the measurement data we obtained by using the computer,
the development of tools for analyzing the data, and the results of data analysis. We
hope that these results will help to solve the Collatz conjecture.

3.1 Graphical Representation of the Parity Vector and
Setting the Parity Vector Characteristic Values

We will explain the Bird’s eye view of the parity vector developed for the subsequent
analysis and the indices introduced to represent the characteristic values of the PV.

3.1.1 Role of Bird’s eye view of the Parity Vector

A graphical representation of the J-PV, U-PV, and A-PV trajectories would facilitate
visual understanding and comprehension of the convergence status.
Therefore, a computer program with the following functions (1) and (2) was created and
used as a tool for investigation and analysis work. This diagram showing the behavior of
the parity vector is called the Bird’s eye view of the parity vector.
(1) Display the trajectory of a given parity vector. Consider each partial PV whose
length increases by one from the beginning of the PV and create the list of each
characteristic value such as generator, stopping time (glide, same as v convergence
frequency), ratio (stopping time / length of partial PV), etc.
(2) If a Collatz sequence of a given positive integer N has a stopping time, generate PVs
until it reaching 1, and display the PV trajectory, stopping time and total stopping time.

[Algorithm 3] The algorithm for creating the skeleton of a Bird’s eye view of a PV and
displaying any parity vector of finite length is as follows.

(Explanation)
When the length of the PV is k and the number of 1s in the PV is d, the skeleton of the
Bird’s eye view can be created by referring to Table 2, which calculates the relationship
between k, d, and the number of v convergences (stopping time) based on the
convergence condition formula (1-2).

1○ Create a k-d coordinate cell table with the length k on the vertical axis and the
number of 1s d on the horizontal axis, and enter ”0” in the coordinate cell (k , d)
corresponding to the pair of k and d where v converges for each PV length. We will call
this cell the Just Converged Cell (JC Cell).

2○ The connection between the JC cells corresponding to each length is taken as the
boundary, and the area to the right of this boundary is called the un converged PV
region, and the area to the left of the boundary is called the converged PV region.

3○ The method for plotting PV of any length is as follows.
First, if the first digit is ”0”, place a ”0” in coordinate cell (1,0). If the first digit is ”1”,
place a ”1” in coordinate cell (1,1).

4○ For the second digit and beyond, if it is a ”0”, place a ”0” in the coordinate cell
directly below, and if it is a ”1”, place a ”1” in the coordinate cell diagonally down to
the right. In general, if the coordinate where the kth digit is placed is (k , d), then if the
k+1th digit is a ”0”, place a ”0” in the coordinate cell directly below (k+1, d), and if it
is a ”1”, place a ”1” in the coordinate cell diagonally down to the right (k+1, d+1).
Then repeat 4○ until the last digit.
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5○ When all the digits of the PV are plotted, if the last number stops at the JC cell, it
means that the PV is a converged PV (J-PV), and if it has not reached the JC cell, it is
an un converged PV (U-PV). Furthermore, a PV that has passed the JC cell becomes an
already converged PV (A-PV).

Figure 1 is an example of (1) and shows the trajectory of a PV= 1111011100010 of length
13. k in the left column of the table in Figure 1 indicates the length of the PV, and the
number d in the heading indicates the cumulative number of 1s in the PV. Figure 2
shows a list of attribute value of partial PV by length from the beginning of the PV.

Figure 1: Example of a graphical representation of a Parity Vector sequence
(Bird’s eye view of the PV) or (Appendix 1)

Figure 2: Example of attribute value display by length of Parity Vector or (Appendix 1)

Figure 3 shows a J-PV of length 7, 1101100 (generator=59), a U-PV of length 11,
11011111010 (generator=27) and an A-converged PV of length 11, 11011010001 (
generator=123) trajectory.

Figure 3: Trajectory of the J-converged, Un converged, and A-converged PV or
(Appendix 1)

Demonstration 2. The graphical representation of the parity vector trajectory about
(1) and partial PV attributes of the parity vector can be viewed by clicking on
Program 2 .The source text of this program (PHP, Python) can be downloaded from
Appendix 2.

Figure 4 is an example of (2).

Figure 4: Graphical representation of the parity vector sequence for a positive integer N
or (Appendix 1)

Demonstration 3. A graphical representation of the trajectory of the parity vector of
positive integer N in (2) can be seen by clicking on Program 3 .The source text of this
program (PHP, Python) can be downloaded from Appendix 2.

3.1.2 PV characteristic value ” PV Convergence Ratio” index

The following two indices are set as PV characteristic values as mentioned in the
functional description (1) of the parity vector Bird’s eye view generation program in
3.1.1.

(1) Convergence Ratio for Stopping Time(ST): Ratio of the stopping time (glide or v
convergence times) of that PV to the length of the PV of an integer (generator).

ST convergence ratio = (Stopping time) /(Length of PV)

(2) Convergence ratio for total stopping time(TST): Ratio of the number of times the
Collatz sequence reaches 1 (total stopping time or delay) to the length of PV of an
integer (generator).

TST convergence ratio = (Total Stopping time)/(Length of PV)
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These ratios compare “the length of PVs that converge to J-convergence” and “the
length of PVs until convergence to 1” to “the length of PVs of a given length”. Each of
these ratios is a measure of how many times the length of the original PV converges.
The larger the number, the longer the trajectory to convergence. These indicators are
used in the subsequent data analysis. Below are examples of ST convergence ratios and
TST convergence ratios.

(Example)

1○ The stopping time for 1101 (generator is 11) of length 4 is 5 and the total stopping
time is 10, i.e., the length of J-convergence PV (11010) is 5. Therefore, the ST
convergence ratio = 5/4 = 1.25 and the TST convergence ratio = 10/4 = 2.5.

2○ The stopping time for 11011 (generator is 27) of length 5 is 59 and the total stopping
time is 70, i.e., the length of J-convergence PV is 59. Therefore, the ST convergence
ratio = 59/5 = 11.8 and the TST convergence ratio = 70/5 = 14.

3○ 111111111111111(generator is 32767) of length 15 has a stopping time of 51 and a
total stopping time of 85, i.e., the length of J-convergence PV is 51. Therefore, the ST
convergence ratio = 51/15 = 3.4 and the TST convergence ratio = 85/15 ≈ 5.67.

4○ The stopping time for 110011101011 of length 12 (generator is 1491) is 4 and the
total stopping time is 60, that is, PV length is 12, but convergence frequency is 4 A-PV,
so the ST convergence ratio = 4/12 ≈ 0.333 is less than 1, and the TST convergence
ratio = 60/12 = 5.

5○ The Stopping time for 110111111010101000 (generator is 68891) of length 18 is 18
and the Total stopping time is 113, i.e., J-convergence PV of length 18. Therefore, ST
convergence ratio = 18/18= 1, and TST convergence ratio = 113/18 ≈ 6.28.

As can be seen from the example above, a PV with an ST convergence ratio of 1 is a
J-PV, a PV greater than 1 is a U-PV, and a PV less than 1 is an A-PV.

Note that the size of the ST convergence ratio is independent of the length of the PV.

3.2 Various characteristic Data on Parity Vector and the
Results of their Analysis

3.2.1 Results of the calculation of the number of J-PV and U-PV by
length

The number of J-PVs and U-PVs by length was calculated in Section 2.1.2, and Table 7
lists the ratio of Un converged PVs by length.
It can be seen that the ratio infinitely approaches zero as the PV length k is infinitely
increased. Of course, since the lengths of the PVs under consideration become infinitely
large, the ratio of Un converged PVs of a given length will never be zero.
However, we can provide some experimental data that support the fact proved by Riho
Terras ([1]) that ”almost every integer N > 1 has a finite stopping time” (see
Terras’ theorem in [2][3]). These data should also contribute to the resolution of the
propositions ”Every integer N with N > 1 has a finite stopping time”,which is
equivalent to the Collatz conjecture.

These data are presented for analysis below.

[Data Analysis 1] PV Convergence Ratio of Nr = {25m+ r}

All integers with N > 1 belong to some Nr = {25m+ r}(0 ≤ r < 25), which can be
classified into 32 remainder classes by the remainder r. The stopping time of the
numbers in each class is less than or equal to 5 for r other than r=7,15,27,31, as shown in
Table 1 in Section 1.2. The calculations are omitted, but the ST convergence ratios of
the PVs corresponding to each integer in those classes are all less than 1.
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Next, the convergence ratios of the PVs corresponding to the integers in each class of
r=7,15,27,31 are obtained, and the maximum ST convergence ratio and the maximum
TST convergence ratio by length and the corresponding PV (generator) for each are
summarized in Table 11 below. (1≤ k ≤ 35)

Table 11: Convergence Ratio for Numbers of Nr = {25m+ r} (r=7, 15, 27 ,31) or
(Appendix 1)

The bold numbers in the table indicate the maximum ST convergence ratio among the
r=7, 15, 27 ,31 classes of each same length.
The plot of ST convergence ratios by r=7, 15, 27 ,31 classes is shown in Figure 5.

Figure 5: Graph of ST Convergence ratio for Nr = {25m+ r} (r=7, 15, 27, 31) or
(Appendix 1)

As can be seen in Figure 5, all the integers in the four classes of r=7, 15, 27, and 31 have
stopping time, and the ST convergence ratio tends to increase slowly as the length
increases from 5 or greater.

[Data Analysis 2] Glide Indicator Data
Next, the glide record and K-max-G(N) for glide (stopping time) measured by the
computer, and the ST convergence ratio of these data are summarized at Table 12. The
graph of ST convergence ratio of K-max-G(N) is shown in Figure 6.

Glide record is a measure defined by Eric Roosendaal ([2],[3]). Let G(N) denote the glide
of a positive integer N. N is called a Glide record if G(M) < G(N) holds for all integers
M such that M < N.
For example, integers 1 and 2 are obvious glide records. Others such as 3, 7, 27, and 703
of G(3)=4, G(7)=7, G(27)=59, and G(703)=81 are applicable. The glide record data in
the Table3-2 were compiled by Eric Roosendaal from a compilation of measurements by
several researchers and are available on the Internet.

K-max-G(N) is the maximum glide for each interval, measured for an integer N intervals
[2k, 2k+1 − 1] (k ≥ 0) of the generator N with finer data than Glide Record. 40 powers or
more of 2 are missing data, but data for some intervals have been shared from glide
record.

The significance of the Glide data in Table 12 is that it implies that all integer values
corresponding to PVs of length k between 1 and 61 converge, especially in each interval
[2k, 2k+1 − 1](0 ≤ k ≤ 61) where the existence of k-Max-G(N) (the maximum value of
Glide) indicates that all integer values belonging to each interval converge (have finite
Glide).

Table 12: ST Convergence Ratio of Glide Records and K-Max-G(N) or (Appendix 1)

Furthermore, from Figure 6, it can be inferred that the ST convergence ratio of
K-max-G(N) for each section is approximately 18 or less and does not change rapidly
and significantly with increasing PV length, but this cannot be theoretically guaranteed.

Figure 6: ST Convergence Ratio of K-Max-G(N) or (Appendix 1)
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3.2.2 Results of J-PV and U-PV counts by ”number of 1s”

In section 2.2, we generated k+1 J-PVs and U-PVs from k U-PVs with ”number of 1s”
and calculated the number of PVs.
The results confirmed the following facts.

(1) Some (but not all) U-PVs with ”d number of 1s” converge to J-PVs in the same ”d
number of 1s” group.

(2) The number of J-PVs with ”d+1 number of 1s” from formula (2-7) X(d+1)= W(d) is
equal to the number of U-PVs with ”d number of 1s”. Therefore,

n
∑

d=1

(X(d+ 1)−W (d)) = 0 (2− 8)

The above is explained using the example in Table 13.

Table 13: Relationship between J-converged PV and Un converged PV
by ”number of 1s” or (Appendix 1)

The PVs in the area enclosed by the bold line are PVs of (A) and (B) below.

(A) the three J-PVs of ”4 numbers of 1” :
1○ 1101100 (59), 2○ 1110100 (7), 3○ 1111000 (15)

(B) the three types U-PVs of ”4 numbers of 1” with different length:
a○ 11011(27),110110(59), b○ 11101(7), 111010(7), c○ 1111(15),11110 (15), 111100 (15)

All PVs other than those listed above with ”4 numbers of 1” are A-PVs.
Incidentally, the U-PVs at a○ , b○ , and c○ are PVs generated from the three U-PVs
1101, 1110, and 111 with ”3 numbers of 1”.

Here, U-PV 110110 (59) of a○ becomes J-PV 1101100 (59) of 1○ by adding 0. In other
words, the 59 of the generator converges. However, the U-PV 11011 (27) of a○ is not a
J-PV in the group of ”4 numbers of 1”. Similarly, the two U-PVs of b○ become the
J-PVs of 2○, and the three U-PVs of c○ become the J-PVs of 3○.

In other words, in this example, six of the seven U-PVs with ”4 numbers of 1” converge,
but one does not.

In addition, as can be seen in the table, the number of J-PVs with ”5 numbers of 1” is 7,
which is the same as the number of U-PVs with ”4 numbers of 1”.

In conclusion, while it is not guaranteed that all U-PVs in a group with ”d number of
ones ” will converge within the same group, there are as many J-PVs that converge
within a PV group with ”d + 1 number of ones” as there are such numbers.

Next, the PV data at the upper and lower limits of the un converged region of the above
PV Bird’s eye view are taken as a characteristic data analysis.

[Data Analysis 3] Upper Limit PV Data of the Un Converged Region

Since the PVs at the upper limit of the un converged region are all 1 PVs, generator can
be expressed as 2n − 1(n ≥ 1) where 2n − 1(n ≥ 5) integers are the numbers belonging to
N31 = {25m+ 31}.

The ST convergence ratios for values of 1 ≤ n ≤ 10000 and the figure plotting them are
shown in Figure 7.
The ST convergence ratios for 2n − 1 PVs are within 3 to 5 for n ≥ 500, resulting in a
flat graph. All 2n − 1 integers are expected to have finite glide.
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Figure 7: Graph of ST Convergence Ratio for 2n − 1(1 ≤ n ≤ 10000) or (Appendix 1)

Furthermore, as a method for finding integers with the specified stopping time (glide)
described in Lemma 2, it is possible to use the upper limit PV of the un converged region.
To find the J-PV of stopping time = k, first, let the number of consecutive 1s in the
upper limit PV be d.
And using the convergence condition formula, calculate the maximum integer d that
satisfies k > d · log(3)/log(2), i.e., d < k · log(2)/log(3). Then, the desired J-PV will have
d 1s followed by (k-d) 0s.
For example, if k=10, then d=6, so the candidate J-PV is 1111110000. The generator for
this PV is 575, and the stopping time is 10. The generator can be calculated by
sequential calculation using Lemma 7 or by solving Diophantine equations, as described
in Section 1.4.

Demonstration 4. The above ”upper limit PV method” can be used to ”find an
integer with a given stopping time (glide)” by clicking on Program 4.The source text
of this program (PHP, Python) can be downloaded from Appendix 2.

When M = 2k − 1, the following lemma holds for the two Collatz sequences when k is
odd (k=2n-1) and when k is even (k=2n), where n is the same integer.

Lemma 10. If M1 = 22n−1 − 1,M2 = 22n − 1 , then there are elements of the same value
in the two Collatz sequences of M1 and M2.
Proof. If S0(M) = 2k − 1, then repeating the Collatz operation k times gives
Sk(M) = 3k − 1.
1○ S0(M1) = 22n−1 − 1 obtains by (2n-1) Collatz operations, S2n−1(M1) = 32n−1 − 1.
Since S2n−1(M1) = 32n−1 − 1 is an even number, by rearranging (32n−1 − 1)/2 we get
(32n−1 − 1)/2 = (3× 32(n−1) − 1)/2 = {2× 32(n−1) + (32(n−1) − 1)}/2 =
32(n−1) + (32(n−1) − 1)/2, where odd + even = odd.
Therefore, the following equation is true:
S2n(M1) = (32n−1 − 1)/2 and
S2n+1(M1) = {3× ((32n−1 − 1)/2) + 1}/2 = ((32n − 3)/2 + 1)/2 = (32n − 1)/4.
2○ On the other hand, S0(M2) = 22n − 1 becomes S2n(M2) = 32n − 1 after 2n Collatz
operations.
S2n(M2) = 32n − 1 = (3n+ 1)(3n− 1) is an even number × even number, so
S2n+1(M2) = (32n − 1)/2, S2n+2(M2) = (32n − 1)/4.

From 1○ and 2○, S2n+1(M1) = (32n − 1)/4 = S2n+2(M2) , and there are two Collatz
sequences, M1 and M2, whose elements are the same.(Q.E.D.)

Lemma 10 states that if M1 = 22n−1 − 1 converges to 1 (total stopping time) when n is
the same integer, then M2 = 22n − 1 also converges to 1 (Total Stopping Time).This
implies that the converse is also true.
If M1 = 22n−1 − 1 does not converge to 1 at infinity, then M2 = 22n − 1 will not converge
to 1 at infinity. The converse is also true.

[Data Analysis 4] Lower Limit PV Data of the Un Converged Region
We consider the algorithm to determine what type of string the PV at the lower limit of
the un converged region will be.

[Algorithm 4] The PV of the lower limit of the un converged region can be found as
follows.

(Explanation)
Assuming that the PV Bird’s eye view of Figure 1 has been created in advance, the
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coordinates of the cell with ”length (k)” on the vertical axis and ”number of 1s (d)” on
the horizontal axis are denoted as (k,d).
In the following explanation, the Just Converged cell (cell with the number 0) in the PV
Bird’s eye view is abbreviated as the JC cell.

The PV of the lower limit of the un converged region starts by setting 1 to the cell
coordinates (1,1) to the right of the JC cell (1,0).

After that, when the coordinates of the JC cell are (k, d), a 1 is placed in the cell to the
right (k, d+1). For a row of length k+1 that does not have a JC cell, a 0 is placed in the
cell (k+1, d+1) immediately below the cell (k, d+1) that has a 1 .

By continuing this operation, it is possible to create the PV of the lower limit of the un
converged region.

(Demonstration 5.) The PV of the lower limit of the un convergence region can be
created by clicking on Program 5.The source text of this program (PHP, Python) can
be downloaded from Appendix 2.

If we use this operation to create a lower limit PV length of 1000, the string will look
like this:

Lower Limit PV

1101101101011011010110110110101101101011011011010110110101101101101011011010110110101101101101011011
0101101101101011011010110110110101101101011011011010110110101101101011011011010110110101101101101011
0110101101101101011011010110110110101101101011011010110110110101101101011011011010110110101101101101
0110110101101101101011011010110110101101101101011011010110110110101101101011011011010110110101101101
1010110110101101101011011011010110110101101101101011011010110110110101101101011011011010110110101101
1010110110110101101101011011011010110110101101101101011011010110110101101101101011011010110110110101
1011010110110110101101101011011011010110110101101101011011011010110110101101101101011011010110110110
1011011010110110110101101101011011010110110110101101101011011011010110110101101101101011011010110110
1101011011010110110101101101101011011010110110110101101101011011011010110110101101101101011011010110
1101011011011010110110101101101101011011010110110110101101101011011011010110110101101101011011011010

Lemma 11. The generator of a PV whose lower limit of the un convergence region is k
digits (k ≥ 5) and whose length is 5 or more is an integer 25m+ 27.

Proof. The first 5 digit string of this PV is 11011, so its generator is 27. After that, 1 or
0 is added and the length increases by 1, so its generator can be expressed as 25m+ 27.
Thus, we can see that the generator of each PV of length k (≥ 5) digits or more from the
beginning of the lower limit PV belongs to {25m+ 27}(m ≥ 0).(Q.E.D.)

In this data analysis, a PV of 10,000 digits in length is generated, the ST convergence
ratios are calculated, and a plot of these ratios is shown in Figure 8.

Most of the ST convergence ratios for the lower PVs are within a factor of 2, and the
plots for lengths greater than 10 are flat.

Figure 8: Graph of ST Convergence Ratio for Lower Limit PV (1 to 10000)
or (Appendix 1)

Furthermore, if you change the 1 at any position in the lower limit PV to 0, the PV up
to that position (e.g., k) will converge and the stopping time will be k. Therefore, to find
the Just PV with a stopping time of k, you simply change the 1 in the kth digit from the
beginning of the lower limit PV to 0.

Demonstration 6. The above ”lower limit PV method” can be used to ”find an integer
with a given stopping time (glide)” as stated in Lemma 2.

Click on Program 6 to check the specific Procedure.The source text of this program
(PHP, Python) can be downloaded from Appendix 2.
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4 Conclusion

The following is a summary of the results of the analysis of measured data that provides
evidence for the positive conclusion of the proposition that “all PVs converge (have
stopping time)” from the perspective of the Parity Vector Bird’s eye view in 3.1 above.
Below is our summary hypothesis, divided into two views: one from the perspective of
PV length (k) on the vertical axis of the Bird’s eye view, and the other from the
perspective of “the number of 1s in PV (d)” on the horizontal axis of the Bird’s eye view.

(1) Consideration from the perspective of PV length (k)
From small to large values of k (from top to bottom on the vertical axis), we can expect
all PVs of the same length (corresponding generators) to have a finite Glide. The
rationale for this is that, as shown in Table 7, the ratio of the number of U-PVs to the
total number of PVs of the same length, “E: Un convergence Ratio” is the ratio of the
number of U-PVs to the number of PVs of the same length, and as the length increases,
the un convergence ratio approaches zero as far as it goes.

For example, for PVs of length 10000 (1 to 210000 in generator), the un convergence ratio
is 2.394397e− 156, which is an extremely small ratio. However, as the length k → ∞, the
rate of un convergence is never zero. The reason for this is that the PV of length k+1,
which is the un converged PV of length k (generator=N) plus 1, is necessarily the un
converged PV (generator is N or N+2k). Therefore, the necessary investigation would be
to know when, if ever, all un converged PVs of the same length converge. Although there
is no mathematical or logical proof for this point, it can be inferred from the data
analysis described above that “all un-converged PVs of length k (generator=N) converge
at PVs of length k + p(0 < p < ∞) (generator=N)”.

1○ From the measured data of the maximum ST convergence ratio of PV by length for
the four remainders of integer N = 25m+ r with r=7, 15, 27, and 31 in [Data Analysis
1], we can confirm the tendency that ”for all four remainders, the maximum ST
convergence ratio increases gradually with finite size as the length increases.”

2○ From the analysis of Glide Records and K-Max-G(N) index data in [Data Analysis 2],
all un converged PVs of length k converge in PV groups of length k + p(0 < p < ∞,
where k+p is the Glide record or k-Max-G(N) of the PV belonging to length k).

3○ The upper limit of the un converged region PV = 111111 · · · (generator is
2k − 1, 0 < k) in the PV bird’s-eye view in [Data Analysis 3] can be inferred that its ST
convergence ratio is between 3 and 5 when k ≥ 500, as can be seen in Figure 7.
Therefore, all 2k − 1 integers are expected to have finite Glide.

4○ In the case of the lower limit of PVs in the un converged region in [Data Analysis 4],
the ST convergence ratio for PVs of length 10 or more is less than 2. All generators
corresponding to partial PVs in the lower limit of PVs are expected to have finite Glide.

(2) Consideration from the perspective of PVs with “d number of 1s”
A situation can be observed where all PVs with the same “number of 1s” converge as the
value of d goes from small to large (from left to right on the horizontal axis). The
rationale for this is that the number of U-PVs with “d number of 1s” is the same as the
number of J-PVs with “d+1 number of 1s,” as obtained from the calculation of the
number of J-PVs and U-PVs in 3.2.2. Then, the J-PV with “d + 1 number of 1s” is the
U-PV with “d + 1 number of 1s” plus some zeros. This implies that all U-PVs with a
finite number of d converge. However, we would like to add that this fact would not hold
if there exist infinitely divergent U-PVs.

Although we were not able to prove that the Collatz Conjecture holds positively, we
believe that we were able to provide supporting data that the Collatz Conjecture would
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hold. We hope that our results will be useful information for researchers who aim to
solve the Collatz Conjecture using the Parity Vector.
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APPENDIX 1
(Tables and Figures)

Table 1: The Stopping Time of Nr = {25m+ r}

Table 2: Relationship between PV length k , d(j),and v convergence
time
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Table 3: Example of determining the convergence of a parity vector
using a convergence condition formula

Table 4: Examples of J-converged PV and Un converged PV by length

Table 5: List of Un converged PVs by length (only a partial list)
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Table 6: List of J-converged PVs by length (only a partial list)

Table 7: Summary table of J-converged, A-converged, and Un con-
verged PVs by PV length

Table 8: Un converged PV list by ”number of 1s”
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Table 9: J-converged PV list by ”number of 1s”

Table 10: Number of J-converged PV and Un-converged PV by ”num-
ber of 1s”

Figure 1: Example of a graphical representation of
a Parity Vector sequence (Bird’s eye view of the PV)
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Figure 2: Example of attribute value display by length
of Parity Vector

Figure 3: Trajectory of the J-converged, Un converged, and A-
converged PV

Figure 4: Graphical representation of the Parity Vector sequence for
a positive integer N
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Table 11: ST Convergence Ratio for Numbers of Nr = {25m+r} (r=7,
15, 27, 31)

Figure 5: Graph of ST Convergence Ratio for Nr = {25m+ r}
(r=7, 15, 27, 31)

Table 12: ST Convergence Ratio of Glide Records and K-Max-G(N)

26



Figure 6: ST Convergence Ratio of K-Max-G(N)

Table 13: Relationship between J-converged PV and Un converged
PV by ”number of 1s”

Figure 7: Graph of ST Convergence Ratio for Upper Limit PV
Generator=2n − 1 (n: 1 to 10000)
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Figure 8: Graph of ST Convergence Ratio for Lower Limit PV (1 to
10000)

APPENDIX 2
(Computer programs and Data)

Following computer programs are the source texts of the
demonstration programs linked to in the paper.
You can download the program you wish to use and modify it to suit
your computer environment.

Table 14: List of Programs

for PHP(∗1) Language for Python(∗2) Language

Program 1 program1.html program1py.html
program1.php program1.py

Program 2 program2.php program2.py
Program 3 program3.php program3.py
Program 4 program4.html program4py.html

Program4.php program4.py
Program 5 program5.html program5py.html

Program5.php program5.py
Program 6 program6.html program6py.html

Program6.php program6.py
ViewOfBird.html ViewOfBird.html is used in Program 2 and Program 3.

(∗1)PHP is an open-source server-side scripting language.
(∗2)Python is a trademark of Python Software Foundation.
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The following data are the textual data linked to in the paper.

Table 15: Data list of Numbers of PVs

short size middle size long size

Data by length 1 to 100 1 to 1000 9000 to 10000
Data by number of 1s 1 to 100 1 to 1000 9000 to 10000

The demonstration programs in Table 1 were developed and are
currently running in the following computer environment.

Table 16: Computer Environment (summary)

(1) Computer Windows Personal Computer

(2) OS Windows 10(∗1)

(3) Server software Xampp v3.3.0 (∗2)for Windows

(4) Language PHP 8 and Python 3

(5) High precision integer GMP function (PHP)

calculations mpmath (Python)
(∗1) Windows is a trademark of Microsoft Corporation in United States.
(∗2) XAMPP is a free and open-source cross-platform web server developed by Apache Friends.

[Acknowledgment]
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GitHub is a software development platform operated by GitHub, Inc.
in the United States.
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